miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana

نویسندگان

  • Jia-Wei Wang
  • Benjamin Czech
  • Detlef Weigel
چکیده

The FT gene integrates several external and endogenous cues controlling flowering, including information on day length. A complex of the mobile FT protein and the bZIP transcription factor FD in turn has a central role in activating genes that execute the switch from vegetative to reproductive development. Here we reveal that microRNA156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes not only act downstream of FT/FD, but also define a separate endogenous flowering pathway. High levels of miR156 in young plants prevent precocious flowering. A subsequent day length-independent decline in miR156 abundance provides a permissive environment for flowering and is paralleled by a rise in SPL levels. At the shoot apex, FT/FD and SPLs converge on an overlapping set of targets, with SPLs directly activating flower-promoting MADS box genes, providing a molecular substrate for both the redundant activities and the feed-forward action of the miR156/SPL and FT/FD modules in flowering control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana.

The production and distribution of plant trichomes is temporally and spatially regulated. After entering into the flowering stage, Arabidopsis thaliana plants have progressively reduced numbers of trichomes on the inflorescence stem, and the floral organs are nearly glabrous. We show here that SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes, which define an endogenous flowering pathway and a...

متن کامل

Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor.

Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydroflavonol 4-reductase. In the stems of Arabidop...

متن کامل

Interaction between Two Timing MicroRNAs Controls Trichome Distribution in Arabidopsis

The miR156-targeted squamosa promoter binding protein like (SPL) transcription factors function as an endogenous age cue in regulating plant phase transition and phase-dependent morphogenesis, but the control of SPL output remains poorly understood. In Arabidopsis thaliana the spatial pattern of trichome is a hallmark of phase transition and governed by SPLs. Here, by dissecting the regulatory ...

متن کامل

Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family from Citrus and the effect of fruit load on their expression

We recently identified a Citrus gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor that contained a sequence complementary to miR156. Genes of the SPL family are known to play a role in flowering regulation and phase transition. In Citrus, the mRNA levels of the gene were significantly altered by fruit load in buds; under heavy fruit load (ON-Crop trees), known to s...

متن کامل

miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis.

The SBP-box transcription factor SQUAMOSA PROMOTER BINDING PROTEIN-LIKE8 (SPL8) is required for proper development of sporogenic tissues in Arabidopsis thaliana. Here, we show that the semisterile phenotype of SPL8 loss-of-function mutants is due to partial functional redundancy with several other members of the Arabidopsis SPL gene family. In contrast with SPL8, the transcripts of these latter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2009